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1. INTRODUCTION 
     Flow of electrically conducting fluid in the presence 
of magnetic field with combined effect of temperature 
dependent viscosity and thermal conductivity on MHD 
natural convection flow along a wavy surface problems 
are significant from the technical point of view. A 
considerable amount of research has been accomplished 
on the effects of electrically conducting fluids such as 
liquid metals, water mixed with a little acid and others in 
the presence of transverse magnetic field on the flow and 
heat transfer characteristics over various geometries. The 
viscosity and thermal conductivity of the fluid to be 
proportional to a linear function of temperature two 
semi-empirical formulae, which was proposed by 
Charraudeau [1]. Yao [2] first investigated the natural 
convection heat transfer from an isothermal vertical 
wavy surface and used an extended Prantdl’s 
transposition theorem and a finite-difference scheme. 
Hossain et al. [3] investigated the natural convection 
flow past a permeable wedge with uniform surface heat 
flux for the fluid having temperature dependent viscosity 
and thermal conductivity. Parveen and Alim [4] studied 
effect of temperature dependent thermal conductivity on 
MHD natural convection flow along a vertical wavy 
surface. The present study is to incorporate the idea that 
the combined effect of temperature dependent viscosity 
and thermal conductivity in presence of magnetic field of 

electrically conducting fluid with free convection 
boundary layer flow along a vertical wavy surface. 
  
 
2. FORMULATION OF THE PROBLEM  
     The boundary layer analysis outlined below allows 

)( Xσ  being arbitrary, but our detailed numerical 
work assumed that the surface exhibits sinusoidal 
deformations. The wavy surface may be described by 
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where L is the characteristic length associated with the  
wavy surface. 
     Under the usual Boussinesq approximation the 
following dimensionless form of the governing equations 
are obtained 
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     In the above equations 
∞

∞=
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C pµPr known is the 

Prandtl number, )(*
∞−= TTwεε is the dimensionless 

viscosity variation parameter, )(*
∞−= TTwγγ is 

dimensionless thermal conductivity variation parameter 

and 
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parameter.  
     The boundary conditions for the present problem are  
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     The flow configuration of the wavy surface and the 
two-dimensional Cartesian coordinate system are shown 
in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Physical model and coordinate system 
 
     Following Yao [2], here introduce the following 
non-dimensional variables 
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     It can easily be seen that the convection induced by 
the wavy surface is described by equations (2)–(5). We 
further notice that, equation (4) indicates that the 
pressure gradient along the y-direction is )( 4

1−GrO , 
which implies that lowest order pressure gradient along 
x-direction can be determined from the inviscid flow 
solution. For the present problem this pressure gradient 
( 0=∂∂ xp ) is zero. Because the pressure along 
x-direction turns into convective motion of fluid. 

Equation (4) further shows that ypGr ∂∂ /4
1

 is )1(O  
and is determined by the left-hand side of this equation. 
Thus, the elimination of yp ∂∂ /  from equations (3) and 
(4) leads to 
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     The variable viscosity and thermal conductivity 
chosen in this study that is introduced by Charraudeau 
[1] and used by Hossain et al. [3] as follows: 

*[1 ( )]T Tµ µ ε∞ ∞= + −  (9) 

( )[ ]∞∞ −+= TTkk *1 γ  (10) 

where µ∞ is the viscosity and ∞k  is the thermal 
conductivity of the ambient fluid. 
     Now we introduce the following transformations to 
reduce the governing equations to a convenient form: 
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     where f(η) is the dimensionless stream function, η is 
the pseudo similarity variable and ψ is the stream 
function that satisfies the continuity equation (2) and is 
related to the velocity components in the usual way as  
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     Introducing the transformations given in equation 
(11) and using (12) into equations (8) and (5) are 
transferred to the new co-ordinate system. Thus the 
resulting equations are  
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The boundary conditions as mentioned in equation (6) 
then take the form given below: 
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In the above equations prime denote the differentiation 
with respect to η. 
     The rate of heat transfer in terms of the local Nusselt 
number Nux and the local skin friction coefficient Cfx take 
the following forms: 
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3. METHOD OF SOLUTION 
     The free convection flow of viscous incompressible 
fluid along a uniformly heated vertical wavy surface in 
presence of magnetic field with variable viscosity and 
thermal conductivity has been investigated. The 
governing equations (13) and (14) with the boundary 
conditions (15) are solved numerically using the very 
efficient implicit finite difference method known as 
Keller box scheme developed by Keller [5].  
 
 
4. RESULTS AND DISCUSSION 
     Numerical values of the skin friction coefficient Cfx, 
the rate of heat transfer in terms of the Nusselt number 
Nux, the streamlines and the isotherms are obtained for 
different values of the viscosity parameter ε = 0.0 
(constant viscosity) to 30.0, the magnetic parameter M = 
0.0 (non magnetic field) to 5.0 and thermal conductivity 
variation parameter γ ranging from 0.0 (constant thermal 
conductivity) to 15.0 and depicted in figures 2-10. 
Figures 2(a) and 2(b) are depicted graphically the 
influence of ε on the surface shear stress in terms of the 
local skin friction coefficient coefficient Cfx and the rate 
of heat transfer Nux respectively keeping all other 
controlling parameters amplitude of wavy surface α = 
0.3, M = 1.0, thermal conductivity variation parameter γ 
= 4.0 and Prandtl number Pr = 7.0. Figure 2(a) indicates 
that increasing the values of the viscosity variation 
parameter ε the skin friction coefficient increases 
monotonically along the upward direction of the plate 
and it is seen that the local skin friction coefficient Cfx 
increases by 66.17% as ε changes from 0.0 to 30.0.  The 
rate of heat transfer decreases by 46.08% due to the 
increased value of ε can be shown from figure 2(b).  
     The variation of thermal conductivity variation 
parameter γ = (0.0, 2.0, 6.0, 10.0, 15.0) on the skin 
friction coefficient and the heat transfer coefficient while 
Prandtl number Pr = 7.0, the amplitude of the wavy 
surface α = 0.3, viscosity variation parameter ε = 5.0 and 

magnetic parameter M = 0.8 are shown in figures 
3(a)-3(b) respectively. The increasing value of γ the skin 
friction coefficient and heat transfer coefficient increases 
monotonically along the upward direction of the plate. It 
is observed that the skin friction coefficient and heat 
transfer rate increases by 40.09% and 80.75% 
respectively when γ changes from 0 to 15.0. 
     The effects of the magnetic parameter M the local skin 
friction coefficient Cfx and local rate of heat transfer Nux 
are illustrated in figures 4(a) and 4(b) respectively for 
Prandtl number Pr = 7.0, amplitude of wavy surface α = 
0.3, thermal conductivity variation parameter γ = 5.0 and 
viscosity parameter ε = 5.0. The skin friction coefficient 
and the rate of heat transfer coefficient decreases by 
34.39% and 12.26% respectively as M increases from 0.0 
to 5.0.  
     The effect of the temperature dependent viscosity 
variation parameter ε on the development of streamlines 
and isotherms are plotted in figures 5 and 6 respectively 
for Prandtl number Pr = 7.0, amplitude of wavy surface α 
= 0.3, thermal conductivity variation parameter γ = 4.0 
and magnetic parameter M = 1.0. It is found that for ε = 
0.0 the value of ψmax is 2.86, for ε = 10.0 ψmax is 2.49, for 
ε = 20.0 ψmax is 2.29 and for ε = 30.0 ψmax is 2.10. Hence 
from these figures it is seen that the effect of ε, the flow 
rate in the boundary layer decreases and the thermal 
boundary layer thickness increases monotonically.  
     Figures 7 and 8 show the effect of thermal 
conductivity variation parameter γ on the formation of 
streamlines and isotherms respectively with other 
controlling parameters amplitude of wavy surface α = 
0.3, magnetic parameter M = 0.8, viscosity parameter ε = 
5.0 and Prandtl number Pr = 7.0. It can be noted that for γ 
equal to 0.0, 6.0, 10.0, and 15.0 the maximum values of 
ψ, that is, ψmax are 1.62, 3.26, 4.06 and 4.58 respectively. 
So it can be concluded that for large value of γ both the 
momentum and the thermal boundary layer thickness 
increases. 
     The effect of different values of magnetic parameter 
M equal to 0.0, 0.5, 3.0 and 5.0 on the streamlines and 
isotherms are illustrated in figures 9 and 10 respectively 
with other controlling parameters Prandtl number Pr = 
7.0, amplitude of wavy surface α = 0.3, γ = 5.0 and ε = 
5.0. Figure 9 depicts that the maximum values of ψ 
decreases quickly while the values of M increases. When 
M = 0.0 the value of ψmax is 5.09, for M = 0.5 the value of 
ψmax is 3.35, for M = 3.0 the value of ψmax is 1.83 and for 
M = 5.0 the value of ψmax is 1.35. On the other hand 
temperature distribution increases significantly as the 
values of magnetic parameter M increases which 
presented in figure 10. 
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Fig 2. Variation of (a) skin-friction coefficient Cfx 
and (b) rate of heat transfer Nux against x for varying 
of ε while α = 0.3, M = 1.0, γ = 4.0 and Pr = 7.0.  
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Fig 3. Variation of (a) skin-friction coefficient Cfx 
and (b) rate of heat transfer Nux against x for varying 
of γ while Pr = 7.0, M = 0.8, ε = 5.0 and α = 0.3. 
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Fig 4. Variation of (a) skin friction coefficient Cfx 
and (b) rate of heat transfer Nux against x for 
different values of magnetic parameter M while Pr  
= 7.0, α = 0.3, γ = 5.0 and ε = 5.0. 
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Fig 5. Streamlines for (a) ε = 0.0 (b) ε = 10.0 (c) ε = 
20.0 (d) ε = 30.0 while Pr = 7.0, M = 1.0, γ = 4.0 and 
α = 0.3. 
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Fig 6. Isotherms for (a) ε = 0.0 (b) ε = 10.0 (c) ε = 
20.0 (d) ε = 30.0 while Pr = 7.0, M = 1.0, γ = 4.0 and 
α = 0.3.   
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Fig 7. Streamlines for (a) γ = 0.0 (b) γ = 6.0 (c) γ = 
10.0 (d) γ = 15.0 while Pr = 7.0, M = 0.8, α = 0.3 and 
ε = 5.0.   
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Fig 8. Isotherms for (a) γ = 0.0 (b) γ = 6.0 (c) γ = 
10.0 (d) γ = 15.0 while Pr = 7.0, M = 0.8, α = 0.3 and 
ε = 5.0. 
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Fig 9. Streamlines for (a) M = 0.0 (b) M = 0.5 (c) M = 
3.0 (d) M = 5.0 while Pr = 7.0, γ = 5.0, ε = 5.0 and α = 
0.3. 
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Fig 10. Isotherms for (a) M = 0.0 (b) M = 0.5 (c) M = 
3.0 (d) M = 5.0 while Pr = 7.0, γ = 5.0, ε = 5.0 and α 
= 0.3. 

 
 
5. CONCLUSIONS 
     The combined effect of temperature dependent 
viscosity and thermal conductivity on MHD free 
convection flow of viscous incompressible fluid along a 
uniformly heated vertical wavy surface has been 
investigated. The conclusions are as follows:  
• The effect of increasing viscosity parameter ε 

results in increasing the local skin friction 
coefficient Cfx, the thermal boundary layer 
thickness and decreasing the local rate of heat 
transfer Nux and the velocity boundary layer 
thickness over the whole boundary layer.  

• An increase in the values of M leads to decrease 
the skin friction coefficient Cfx, the local rates of 
heat transfer Nux and the velocity profile while the 
reverse phenomena occurs for the temperature 
distribution. 

• It is found that the skin friction coefficient, heat 
transfer rates, the flow rate and thermal boundary 
layer thickness increases within the boundary layer 
for the increasing value of thermal conductivity 
variation parameter γ. 
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